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Phase-field modeling has proven to be a versatile tool for simulating microstructural evolution phenomena,
such as grain growth in polycrystalline materials. However, the computing time and computing memory
requirements of a phase-field model pose severe limitations on the number of phase-field variables that can be
taken into account in a practical implementation. In this paper, a sparse bounding box algorithm is proposed
that allows the use of a large number of phase-field variables without excessive memory usage or computa-
tional requirements. The algorithm is applied to a three-dimensional model for grain growth in the presence of

second-phase particles.
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I. INTRODUCTION

The microstructure of materials often consists of multiple
grains with different crystallographic orientations. The study
of the evolution of these grains is of great technological im-
portance, because many material properties, such as strength
and toughness, depend on the mean grain size and grain size
distribution. A large number of theoretical, experimental, and
computational studies have been performed on this subject
(see, for example, Refs. [1-5]). Although it is well under-
stood that grain growth behavior results from the interplay
between curvature-driven grain boundary movement and the
geometrical requirements at triple junctions, there are still
many controversies, especially with respect to the shape and
evolution of the grain size distribution. Computer simula-
tions based on mesoscale models such as Monte Carlo, ver-
tex and phase-field models, and cellular automata, are essen-
tial for a better understanding of grain growth. They allow
one to study separately the roles of different parameters,
which is impossible in experimental studies on real materi-
als. Moreover, images of three-dimensional simulations pro-
vide more insight in the shape and size of grains than two-
dimensional microscopic images of cross sections of a
material.

Phase-field modeling has shown to be a versatile tool for
simulating microstructural evolution phenomena, such as so-
lidification [6-8], precipitation [9,10], and grain growth
[11-13]. Tt allows to predict the evolution of complex mor-
phologies considering different thermodynamic driving
forces, such as interfacial energy, bulk energy, and elastic
energy, and different transport processes, such as heat and
mass diffusion. Grain growth in single-phase polycrystalline
materials has been simulated with the phase-field method by
different authors [14-16]. The model of Chen and Yang was
extensively discussed and results were compared to experi-
mental observations and analytical theories in [11,17]. An
extension of the model towards two-phase materials was pro-
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posed in [18-20], and applied for simulating Zener pinning
by growing second-phase particles in [21], and for particles
which are constant in time in [22,23]. In [14], the phase-field
model represents the microstructure of a single-phase mate-
rial by a set of p nonconserved phase-field variables #,(r,),
m(r,1), ..., 7m,(r,1). These phase-field variables are used to
distinguish the different crystallographic orientations of the
grains. Inside a grain, one phase-field variable 7, takes a
nonzero constant value, mostly 1 or —1, while the other
phase-field variables assume values close to zero. Across the
grain boundaries, the corresponding field variables vary con-
tinuously from their equilibrium value in the grain to their
equilibrium value in the neighboring grains. The spatial and
temporal evolution of the phase-field variables is governed
by the time-dependent Ginzburg-Landau equations. In prin-
ciple, the number of phase-field variables p should equal or
exceed the total number of grains, as in reality the number of
possible grain orientations is infinite. When not enough crys-
tallographic orientations are involved in a grain growth
simulation, growth can occur by coalescence of two neigh-
boring grains with the same orientation. This leads to incor-
rect growth kinetics and unphysical grain shapes. Especially
in three-dimensional simulations, where grains have on av-
erage more neighbors than in two dimensions, a very large
number of crystallographic orientations are required to mini-
mize the effect of grain coalescence [12]. Moreover, for an-
isotropic materials, it is important that the orientation depen-
dence of material properties is resolved well. Furthermore,
when the pinning effect of particles is modeled, the spatial
resolution of the employed numerical technique has to be
fine enough in order to represent the particles, which are
much smaller than the grains, and reproduce the shape of
grain boundaries at particle-grain boundary intersections cor-
rectly. To conclude, since one is mostly interested in the
evolution of the grain size distribution, a large amount of
grains (and particles) must be considered in grain growth
simulations to achieve reliable statistics. As a consequence,
realistic three-dimensional computer simulations for grain
growth with a phase-field model demand significant amounts
of computation power.

Several algorithms have been designed to overcome the
computational limitations of the phase-field method. In
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[12,24], the grain orientations are dynamically reassigned to
reduce memory requirements and to avoid frequent grain
coalescence. This approach is limited to systems where the
only use of the phase-field variables is to distinguish unique
domains. Incorporating anisotropy or any property depend-
ing on the relative or absolute position of a grain or the
orientation difference between neighboring grains into this
technique is impossible. Adaptive meshing [25-27], and
moving mesh techniques [28,29], have been used in phase-
field simulations to increase computational efficiency. How-
ever, so far these techniques were always applied for simu-
lations with a small number of phase-field variables. For
polycrystalline structures their benefits are drastically re-
duced, because of the amount of interface involved.

In [30-32], efficient algorithms using a sparse data struc-
ture are proposed. These algorithms are based on the obser-
vation that only a few crystallographic orientations are active
at a given point in a microstructure. In [30], the microstruc-
tural evolution is only computed for nonzero phase-field val-
ues. A simple data structure is proposed which maintains a
dynamic vector of the indices and the values of the nonzero
phase-field variables at each grid point. In [31], a similar data
structure is employed. Furthermore, a simple test condition is
used, which distinguishes the evolving phase-field values at
grain boundaries from the constant phase-field values interior
to grains. The model equations are then only solved for the
evolving phase-field values. Both sparse algorithms are de-
signed for the model of [14]. In [32], an efficient algorithm is
constructed in the context of the models of [33,34]. The al-
gorithm also uses a similar data structure, but puts a restric-
tion N,, on the maximum number of nonzero phase-field vari-
ables at every grid point and only stores the indices and the
values of the N, phase-field variables with the largest mag-
nitudes. These sparse algorithms show significant improve-
ments over conventional algorithms as they scale with the
size of the microstructure instead of with the number of crys-
tallographic orientations involved. However, all three algo-
rithms are designed for explicit time integration. Explicit
time-integration schemes do not involve the solution of
coupled equations, but can require large amounts of comput-
ing time due to impractical small time steps, imposed by
strong stability conditions. In contrast, implicit and semi-
implicit schemes require more computations due to involved
coupled equations, but have better stability properties and
therefore, larger time steps can be used. In [35], a semi-
implicit scheme is shown to allow much larger time-step
sizes than explicit schemes for the model of [14]. Unfortu-
nately, it is difficult to apply this semi-implicit scheme to the
data structure of [30-32]. Furthermore, each of the described
sparse algorithms employs a data structure that maintains,
besides the values of the active phase-field variables at every
grid point, also their indices. For models which include an-
isotropic boundary energies, a logical extension to this data
structure is to store additional material parameters at each
grid point. However, there is inherent overhead associated
with this storage scheme, since the same values are stored at
multiple locations. Finally, one of the main goals of grain
growth simulations is to study the evolution of the mean
grain size and the grain size distribution. For this purpose,
the grains of a microstructure have to be located, and their
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volume has to be computed. However, this data is not di-
rectly available in the sparse data structures of [30-32].
Therefore, it can take a relatively large amount of time to
obtain the necessary information, especially when this post-
processing is repeated for multiple microstructures at differ-
ent moments in their evolution.

In this paper, a bounding box algorithm, based on the
same observations that led to [30-32], is presented, however
now for semi-implicit time integration. The algorithm is de-
signed in the context of the study of grain growth in the
presence of second-phase particles according to the model of
[14,22]. However, it can be applied to other cases as well.
Thanks to the object-oriented design, the algorithm can eas-
ily be extended to more complex phase-field models, for ex-
ample, for grain growth in materials which show orientation
dependence. Moreover, the object-oriented approach has
definite advantages in postprocessing.

The structure of the paper is as follows. The phase-field
model for which we developed the bounding box algorithm
is presented in Sec. II. In Sec. III, the bounding box algo-
rithm itself is explained. Then, the simulation conditions are
specified in Sec. IV. The bounding box algorithm is validated
for three-dimensional simulations in Secs. V and VI. In Sec.
VII, the algorithm is applied to grain growth in the presence
of second-phase particles and simulation results are dis-
cussed. Some concluding remarks are formulated in Sec.
VIII.

II. PHASE-FIELD MODEL AND DISCRETIZATION

The bounding box algorithm has been implemented for
phase-field models for grain growth as described in [14].
According to [14], the microstructure of a single-phase ma-
terial is represented by a set of p phase-field variables

(1,0, m(r,0), ..., 7,(r,0). (1)

The phase-field variables are used to distinguish the different
crystallographic orientations of the grains and are continuous
functions of the spatial coordinates and time. The spatial and
temporal evolution of the phase-field variables is governed
by the time-dependent Ginzburg-Landau equations,

anr,t oF
AU .=l .p. )
at aﬂi(rJ)

The kinetic coefficient L is related to the grain boundary
mobility. The free energy F of the system is described by

p 7]4 772 p p K p
e[| S(Z L) eSS 55 o .
14 i=1

i=1 4 2 i=1 j#i

3)

with « the gradient energy coefficient.

In [22,23], this phase-field model is extended for simulat-
ing grain growth in materials containing small incoherent
second-phase particles with constant properties. To include
such particles in the model, a spatially dependent parameter
¢ is added. This parameter ¢ equals 1 inside a particle and 0
elsewhere and remains constant in time. The free energy F of
the system is now described by
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Substituting Eq. (4) into Eq. (2) results in a set of reaction-
diffusion partial differential equations

P
I
—= [KV27/1'_ 7, + m—%(E 7+ ¢2)],

ot J#i

i=1,...,p. (5)

For isotropic grain boundary energy and mobility the coeffi-
cients k and L are constants. Periodic boundary conditions
are applied, as in [36], p. 106.

Equations (5) are solved by using a finite difference
scheme. The spatial derivative is discretized with second-
order central differences. For r=(x,y,z), we have

) B 7:(v + Av) = 27,(v) + 7(v - Av)
V 77i(1') - UZXEJ,Z (AU)Z s

(6)

where Ax, Ay, and Az denote the mesh widths in the finite
difference grid. The time derivative is discretized using a
first-order semi-implicit scheme [35]. The diffusion part is
treated implicitly, the reaction part explicitly:

p
=LY (kV27)"" + [n?+ m—%(E 7
j

+¢2>] , i=1,...,p, (7)

where the superscript n indicates the solutions at time-step 7.
The implicit treatment of the Laplacian, combined with the
explicit treatment of the nonlinear coupling of the phase-field
variables, allows the use of a large time step without the need
to solve one very large coupled system of equations. It ef-
fectively decouples the system into p scalar diffusion equa-
tions to be solved at every time step.

n+l _ _n

7; 7;
At

III. BOUNDING BOX ALGORITHM

A phase-field simulation is both memory consuming and
computationally intensive. There are several ways to speed
up the phase-field computations. Because of the explicit
treatment of the coupling of the phase-field variables, the
equations can be assigned to different processors and solu-
tions can be computed in parallel [24]. A closer look at a
grain growth simulation reveals that the solutions of the
model display small regions of high activity surrounded by
large regions of inactivity. This property, combined with the
semi-implicit discretization, is exploited in this paper by only
solving the equations locally. This technique lowers both
storage requirements, computing time, and computing
memory.

To initialize the bounding box algorithm, a polycrystalline
microstructure is required. The initial microstructure can be
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obtained, for example, from microscopic images, Voronoi
calculation, or by simulation.

A phase-field variable is defined to be active at a given
grid point when its absolute value exceeds a small positive
threshold value €. At every grid point, only a few phase-field
variables are active and thus contribute to the evolution of
the microstructure; inside each grain, away from its bound-
aries, one phase-field variable, 7, is active and near grain
boundaries, only those phase-field variables corresponding to
the neighboring grains, are active. Based on these properties,
a grain region éi,k is now identified by its type i, its sequence
number k, and a set of ordered couples (r, 7;(r)) with grid
points r that are connected, and with |7,(r)| > €

é,-,kz {(r,7(r)):|(r)| > € and r connected}.  (8)

The type i corresponds to a crystallographic orientation. The
sequence number k ranges from 1 to n;, with n; the number
of grain regions associated with #;. Grain regions are al-
lowed to wrap around the grid boundaries so that periodic
boundary conditions are automatically taken into account.
Note that the grain regions overlap, which allows the regions
to interact with each other.

For every grain region (A}i,k, a bounding box is determined
as the smallest cuboid grid part containing the grid points r

of CA},-,,C. The bounding box is completely characterized by the
coordinates of two opposite delimiting grid points. The set

A

B; . is then defined as

Ig’i’k ={(r, ,(r)):r lies inside the bounding box of éi,k}-
)
Having defined the active phase-field variables, grain re-

gions éi,k and sets Ig’,-’k, Egs. (5) only have to be solved for

the values contained in the sets B;;.

The bounding box algorithm proceeds as in Fig. 1. The
preprocessing step of the algorithm is illustrated in Fig. 2.
First, for every phase-field variable 7;, all corresponding

grain regions C/\},»’k, k=1,...,n; are located. Second, the cor-

A

responding bounding boxes and the sets B, ; are established.
Finally, a grain region numbering takes place and a new set
of phase-field variables is introduced, such that there is a
one-to-one mapping between grain regions and phase-field

variables. More precisely, every grain region G, for i
=1,...,pand k=1,...,n; is given a unique index [/, ranging
from 1 to ¢, the total number of grain regions, with g
=3P n;. That is, grain region éi,k is rewritten asG,, a grain
region corresponding to one of the new phase-field variables,
n, for I=1,...,q, with bounding box information copied

from éi,k' This renumbering of grain regions and phase-field
variables is allowed, since the actual value of the grain ori-
entation does not play a role in Egs. (5). In the situation that
grains can divide into subgrains (e.g., recovery after defor-
mation), the renumbering procedure can be reexecuted to
guarantee a one-to-one phase-field variable to grain relation.
The assignment of unique phase-field variables to every
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<preprocessing step>

for phase field wvariables i=1,...,p
find grain regions GA’“C
for k=1,...,n;

determine bounding box delimiters and qu

grain region numbering procedure
<computation step>
for time steps t=1,...,n

for 1=1,...,q

solve equation (5) for By

update bounding box delimiters and B

FIG. 1. Bounding box algorithm.

grain region ensures coalescence-free simulations with the
bounding box algorithm.

In the bounding box data structure, the microstructure is
treated as an object with a number of attributes: the grid size
and, if present in the model, second-phase particles or other
features of the polycrystalline microstructure. A grain region
in turn is also treated as an object. Its attributes are the ma-
terial properties xk and L, the bounding box delimiters, the
type and the set B;. Figure 3 shows a unified modeling lan-
guage (UML) diagram of the object-oriented data structure.
The line connecting the elements of the data structure indi-
cates their association relationship. The notation at each end
of the line indicates the multiplicity, which is the number of
objects that participate in the association.

After the data structure is determined, the evolution of the
microstructure is computed in the computation step. From

the starting point of the bounding box algorithm on, the
phase-field values not exceeding € in absolute value are as-
sumed to be zero. Therefore, a margin of one grid point,
filled with zeros, can be added to the bounding boxes and

sets éi,k in accordance with this assumption. Equations (5)
can thus be solved locally using homogeneous Dirichlet con-
ditions and allow for the grain regions to grow inside the
bounding boxes. The resulting systems can be solved with
iterative methods, for example, with multigrid methods, the
successive over-relaxation (SOR) method or the Gauss-
Seidel method. The latter is the method used in this paper.
Within each time step, for every set B, in turn, the solution of
Eq. (5) is computed using the discretization described in Sec.
II. Depending on whether grain growth is simulated in the
presence of second-phase particles, the additional term ¢ is
included in the equations. After the computation, the algo-

> threshold
I < threshold

FIG. 2. (Color online) Locat-
ing the grain regions and deter-
mining the bounding boxes in the
preprocessing step, when the ini-
tial microstructure is obtained
from a random structure by simu-
lation. (a) The values of one
phase-field variable, #,, vary be-
tween the two equilibrium values
—1 and 1. (b) The threshold value
€ is applied and the grain regions
é,-’k are located. (c) The bounding
boxes and the sets é,-,k are estab-
lished. (d) A new phase-field vari-
able 7, is assigned to every CA;,-,k
and the values inside the corre-

sponding éi’k are isolated.

(d)
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Microstructure GrainRegion
+grid size ’14'+kappa
+second-phase particles +L
+bounding box delimiters
+type
+B

FIG. 3. UML diagram of the object-oriented data structure com-
posed in the preprocessing step. The microstructure and grain re-
gions are treated as objects with a number of attributes.

rithm checks whether the grain region G, has shrunk or
grown and adjusts the bounding box delimiters and the set B,
accordingly, taking into account the margin of zeros.

The object-oriented data structure allows for easy exten-
sion to more complex phase-field models. Misorientation or
inclination dependence of the grain boundary energy and
mobility can be inserted into the structure by adding at-
tributes and objects (see Fig. 4). During the preprocessing
step, it is then possible to apply orientation-dependent pa-
rameters to be used in the further simulations. As mentioned,
a grain region is treated as an object with a number of prop-
erties. A property is stored once per grain region, and not for
every grid point of the grain region. In the same way, grain
boundaries can be treated as objects with specific properties.

The data structure of the bounding box algorithm can save
significant time in postprocessing, e.g., when the number of
grains or the mean grain size, by which we mean the mean
grain volume, have to be determined. The number of grains
and their location is known throughout the simulation and
this information can be used immediately.

IV. SIMULATION TEST CASE

To obtain an initial polycrystalline microstructure for
simulations with the bounding box algorithm, a parallel
implementation was made of an algorithm solving Egs. (5)
globally, based on the semi-implicit finite-difference scheme
proposed in [37]. This algorithm and its characteristics will
be referred to as the conventional algorithm and the conven-
tional characteristics. Simulations with the conventional al-
gorithm were run on a 256X 256 X256 grid. Because of
memory limitations, only 100 phase-field variables were em-
ployed, whereas according to [12], more than 200 phase-field
variables are required to prevent grain coalescence in a three-
dimensional simulation. The parameter values were set to
k=0.5 and L=1 and no second-phase particles were in-
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cluded. The discretization spacings were Ax=1 and Ar=0.2.
At the start of a simulation, small random values between
—0.001 and 0.001 were assigned to the phase-field variables
at all grid points. All computations were performed on 20
nodes of a computer cluster, which are interconnected with
an Infiniband network. At simulation time f,, the conven-
tional algorithm was stopped and the preprocessing step of
the bounding box algorithm was applied.

To visualize the microstructural evolution, the function
is defined,

q
e, =2 (e, (10)
=1

The function is calculated during a simulation and only the
values inside the bounding boxes are taken into account for
the computation of Eq. (10). The function ¢ takes the value
1 inside grains and considerably smaller values on grain
boundaries.

V. VALIDATION OF THE BOUNDING BOX ALGORITHM

The bounding box algorithm has two important param-
eters: the applied threshold value € and the initial mean grain
size. When the initial microstructure is obtained through
simulation, its mean grain size is determined by the time
point £, at which the conventional simulation is stopped (see
Sec. IV). The parameters € and the mean grain size influence
the accuracy, computing memory, and computing time of the
bounding box algorithm. In this section, implementation in-
dependent characteristics of the algorithm are discussed. Sec-
tion VI treats the characteristics which are implementation
dependent.

A. Preprocessing step

In the preprocessing step, the active regions of the micro-
structure are identified and isolated. As a result, the storage
requirements of the bounding box data structure are signifi-
cantly lower than those of the conventional grid-based data
structure. Whereas the requirements of the conventional data
structure equal the number of phase-field variables multi-
plied by the grid size, the requirements of the bounding box
data structure are determined by the number of active phase-
field variables per grid point and equal the number of phase-
field values included in the sets B;. This number depends on
€ and the initial mean grain size and, as will be shown below,

Microstructure
—1‘ +grid size ’1— FIG. 4. UML diagram of the
+second-phase particles object-oriented data structure, ex-
tended to simulate anisotropic
q grain growth. The microstructure,
GrainRegion GrainBoundary grain regions, and grain bound-
1 0..q-1 aries are treate'd as objects with a
+bounding box delimiters +kappa number of attributes.
+type +L
+B
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TABLE 1. Number of phase-field values required per grid point for the bounding box algorithm and the
conventional algorithm as a function of € and the initial mean grain size.

Threshold value €

Starting Mean grain size 1073 10 1073 1070 Conventional
;=200 3.5%10° 6.15 9.35 14.19 31.12 100
t,=400 7.8 X103 4.98 7.11 9.74 13.33 100
t,=600 1.4x10* 4.29 5.84 7.73 10.16 100
;=800 2.0x 10* 3.85 5.00 6.40 7.94 100

is typically a small fraction of what is required for the con-
ventional implementation.

The preprocessing step was performed on the simulation
results specified in Sec. IV at time points #,=200, 400, 600,
and 800. Different values of € were applied: 1073, 1074, 107,
and 107, Table I shows the required number of phase-field
values per grid point for the bounding box algorithm and the
conventional algorithm as a function of € and ¢, and thus the
initial mean grain size. The fine-grained topology of the mi-
crostructure at the initial evolution stages results in smaller
initial mean grain sizes and larger numbers of required
phase-field values. It can be seen that the bounding box al-
gorithm is far more efficient than the conventional algorithm.

B. Computation step

In the computation step of the bounding box algorithm,
Egs. (5) are only solved for the sets B;. A large amount of
computing time and computing memory is thus saved. Dur-
ing a simulation, the topology of a microstructure becomes
more and more coarse grained. While the memory demand of
the conventional algorithm is independent of the topology,
the bounding box algorithm is more efficient for coarser
grained topologies. To study the efficiency of the computa-
tion step, a 256 X256 X256 microstructure was generated
containing 67 grains with a mean grain size of 2.3 X 10° grid
points and a different crystallographic orientation for every
grain. Table II shows the time evolution of the number of
phase-field values per grid point for the bounding box algo-
rithm and the conventional algorithm for different threshold
values €. It can be seen that the memory efficiency of the
bounding box algorithm increases with the simulation time.
Furthermore, in the course of the simulation, the memory
efficiencies for the different threshold values converge. This

indicates that a higher threshold value € only increases the
computational requirements considerable at the beginning.
Next, we compare the simulation accuracy of the bound-
ing box algorithm with that of the conventional algorithm.
Since the microstructure, described in the previous para-
graph, has a different crystallographic orientation for every
grain, it allows for coalescence-free simulations with the
conventional algorithm. The simulation accuracy is now
studied by looking at the differences between the results of
the conventional algorithm and those of the bounding box
algorithm for different threshold values e=1073, 1074, 107,
and 107°, after 1, 1000, and 7000 time steps. In each case,
the differences between the computed results for ¢ [see Eq.
(10)] are determined for every grid point and the mean grain
size is obtained. After one time step, the point-wise differ-
ences between results for the threshold values 1073, 1074,
1075, and 107¢ are of order 1075, 107°, 107, and 107°, re-
spectively. Furthermore, the mean grain size shows no influ-
ence of the use of different threshold values. After 1000 time
steps, the pointwise differences are only of order 107>. The
mean grain size obtained by the bounding box algorithm
deviates less than 1077, relatively, from the size obtained by
the conventional algorithm. The differences between the re-
sults obtained for the different threshold values e are even
smaller. After 7000 time steps, the pointwise differences of
all computed results are only of order 102 and located at the
boundaries of grains which are slightly larger or smaller
when compared. The mean grain sizes computed by the
bounding box algorithm for the different threshold values
differ by less than 1077, relatively. The relative differences
between the mean grain sizes computed by the bounding box
algorithm and the conventional algorithm are larger but still
only of order 107. This shows that the bounding box algo-
rithm is highly accurate. Furthermore, the accuracy of the

TABLE II. Number of phase-field values per grid point for the bounding box algorithm and the conven-
tional algorithm as a function of € and the simulation time.

Threshold value €

Simulation time ¢ 1073 10~ 1073 107° Conventional
t 5.75 6.48 7.26 8.10 100
1,4+200 6.71 6.74 6.90 6.90 100
1,+400 6.72 6.73 6.81 6.81 100
1,+600 6.68 6.69 6.73 6.73 100
1,+800 6.64 6.65 6.68 6.68 100

056702-6



BOUNDING BOX ALGORITHM FOR THREE-DIMENSIONAL...

14
- - -conventional P
=12 <-¢=107° .
Q £ -5 /'
v 8-10,4978:10 3
8z |[oe=10" 7
@) 8H _
€ |[e=10"° Z
m 2
S o0 6+
o =
c €
© =}
o< 41
=2
=Ll
0

L L L L L |
0 500 1000 1500 2000 2500 3000
Simulation time

FIG. 5. (Color online) Effect of € on the initial configuration:
evolution of the mean grain size from 7,=200 to r=3000, computed
by the conventional algorithm and by the bounding box algorithm
for different threshold values e.

bounding box computations is little influenced by the mag-
nitude of the threshold value e.

Finally, we study the effect of the threshold value € and
the time point ¢, on the initial configuration. When the initial
microstructure is obtained by simulation, the value of € can
influence the initial configuration. If not enough phase-field
variables are involved in a conventional simulation, the small
grains which nucleate and grow during the simulation can
undergo significant coalescing. Consider a small positive
threshold value e. In the time steps before two neighboring
grains with the same crystallographic orientation coalesce,
the values of the involved phase-field variable start to in-
crease along the contact boundary and eventually exceed € in
magnitude. At that point, the grains have become one accord-
ing to the definition in Sec. IIT and will also be considered as
one grain by the bounding box algorithm. As a result fewer
different grains are taken into account and the initial mean
grain size is larger. By using high values of e, the neighbor-
ing grains will not be treated as one, but as separate grains.
The use of too high threshold values will however disturb the
accuracy of the simulation results. To study the influence of €

14
- - -conventional
. 9127$ts=800
c _
S '2107%13_600
e +ts=400
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on the initial configuration and further, on the long-term ki-
netics, the bounding box is applied to the simulation results
specified in Sec. IV. Figure 5 shows the evolution of the
mean grain size from #,=200 to r=3000, computed by the
conventional algorithm and by the bounding box algorithm
for several e values. It can be seen that the mean grain size is
higher for lower threshold values and highest for the conven-
tional algorithm.

The time point ¢, also has an influence on the initial con-
figuration: when ¢, is chosen earlier, some amount of the
coalescence of the small grains which nucleate during the
initial simulation is prevented. To study this effect, the
bounding box algorithm was started at #,=200, 400, 600, and
800 and run until 7=3000. Figure 6 illustrates the computed
evolution of the mean grain size from the different 7, to ¢
=3000 for e=10"* and €=10"> and the conventional algo-
rithm. As anticipated, the mean grain size is smaller when z,
is chosen earlier. For smaller values of €, this effect is not
clear: this can be explained by the effect discussed in the
previous paragraph. Both the influence of € and ¢, on the
initial configuration are a consequence of creating an initial
microstructure with the conventional algorithm. Neverthe-
less, we feel that this conventional method, possibly ex-
ecuted on a coarser mesh, is a convenient way to obtain an
initial large polycrystalline structure since in the case of ideal
grain growth, the typical grain structure with stationary grain
size distribution is recovered after a short transition time (see
also [38]).

Based on the observations concerning the memory reduc-
tion, accuracy and initial configuration for the different
threshold values, we advocate to use e=107> or 107°.

The simulations further showed that at every grid point,
approximately seven phase-field variables are active. Since
the bounding box algorithm only takes into account the ac-
tive phase-field values, this means that the computational
requirements of the algorithm depend on the system size and
not on the total number of phase-field variables.
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FIG. 6. (Color online) Effect of z, on the initial configuration: evolution of the mean grain size from 7, to r=3000, computed by the
conventional algorithm and by the bounding box algorithm for different starting time points #, and threshold values (a) e=10"* and (b) €

=1072.
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TABLE III. Bounding box storage requirements (gigabyte) as a function of € and the initial mean grain
size (grid points), compared to conventional storage requirements.

Threshold value €

Starting Mean grain size 1073 10 1073 107° Conventional
;=200 3.5%x10° 0.84 1.27 1.93 4.18 13.4
t,=400 7.8%X 103 0.70 1.00 1.37 1.90 13.4
t,=600 1.4x10* 0.63 0.86 1.14 1.50 13.4
t,=800 2.0x 10* 0.59 0.77 0.98 1.24 13.4

VI. COMPUTATIONAL REQUIREMENTS

In this section, implementation-dependent characteristics
of the bounding box algorithm are discussed.

A. Preprocessing step

From the preprocessing step of the bounding box algo-
rithm on, all phase-field values not exceeding € in absolute
value are assumed to be zero. They are not included in the
sets B; and therefore excluded from further computations. As
a consequence, these values do not have to be stored and the
data resulting from a bounding box simulation require less
storage space than the data from a conventional simulation.
Table III displays the bounding box storage requirements for
t,=200, 400, 600, and 800, and thus different initial mean
grain sizes, and e=1073, 107, 107>, and 107 and the con-
ventional storage requirements. For smaller mean grain size,
the storage requirements are higher. Furthermore, the thresh-
old value € has a larger influence on the storage amount
when the mean grain size is smaller.

B. Computation step

If the initial microstructure is obtained by simulation, the
total amount of computing resources spent on a grain growth
simulation depends on the starting time point 7, When ¢, is
chosen relatively small, little effort is spent on a time and
memory consuming conventional simulation. The computa-

Time per 1000 time steps (h)

1 1 1 1
1000 1500 2000 2500

Simulation time

(a)

500 560

tional requirements are also influenced by the threshold
value e. Figure 7 shows the evolution of the computing time
and computing memory per 1000 time steps of the bounding
box algorithm for #,=200 and different threshold values €. At
the start of the bounding box algorithm, considerably more
computing time and computing memory is required, because
of the smaller mean grain size. Furthermore, for lower
threshold values €, the computational requirements are
higher. Later on in the simulations, the requirements are ap-
proximately the same for the different threshold values.

The conventional computational requirements are con-
stant in time, whereas the bounding box algorithm requires
less resources as simulation time progresses. In Table IV, the
computational requirements for the first 5000 time steps of a
conventional simulation and a bounding box simulation are
shown for €=107> and #,=200. The conventional algorithm
was run on 20 processors (see Sec. IV), in contrast to the
bounding box algorithm which could be executed on a single
processor.

VII. APPLICATION

To illustrate the applicability and efficiency of the bound-
ing box algorithm, we applied the algorithm to grain growth
in the presence of second-phase particles. The addition of
alloying elements, which leads to the formation of finely
dispersed second-phase particles, is a common technique to
control the grain size of a microstructure. The particles pin

5.5r
5 —~—e=10"°
4.5 —o-e=107
= 4 ——g=10""
g 35 —%—g = 10_3
>3
g 3
& X
=25
2
1.5
1 | | | ~ VTS
200 500 1000 1500 2000 2500

Simulation time

(b)

FIG. 7. (Color online) Evolution of (a) computing time and (b) computing memory per 1000 time steps (Az=0.2) of the bounding box

algorithm for #,=200 and different threshold values e.
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TABLE IV. Computational requirements of the first S000 time steps (A7=0.2) of the bounding box algorithm with e=107> as a function
of the simulation time and the mean grain size (grid points), compared to the conventional algorithm.

Bounding box (on 1 processor)

Conventional (on 20 processors)

Simulation time Mean grain size Time (h) Memory (gigabyte) Time (h) Memory (gigabyte)
200— 400 3.52X10°—7.82% 103 6.3 2.8 6.8 30.3
400— 600 7.82%X10°—1.35x 10* 4.7 2.2 6.8 30.3
600— 800 1.35%X10*—1.95%x 10* 3.8 1.9 6.8 30.3
800— 1000 1.95 X 10*—2.66 X 10* 3.5 1.7 6.8 30.3
1000— 1200 2.66 X 10*—3.46 X 10* 3.1 1.6 6.8 303

the grain boundaries and when a limiting grain size is
reached, grain growth stops. The limiting grain size depends
on the number, size, shape, and spatial distribution of the
particles. In [22,23], a phase-field model is presented for
simulating grain growth in materials containing small inco-
herent second-phase particles which are constant in time.
The interaction between a single particle and a grain bound-
ary is investigated and the results of two-dimensional simu-
lations of the pinning effect of the particles on grain growth
are discussed. Unfortunately, the computational requirements
of three-dimensional simulations with the conventional algo-
rithm are memory consuming and computationally intensive.
With the bounding box algorithm, three-dimensional simula-
tion results can be obtained for relevant comparison with
experimental data without excessive computational require-
ments.

Simulations were run on a 256 X 256 X 256 grid with 100
phase-field variables and volume fractions of fy,=5%, 8%,

FIG. 8. (Color online) Evolution of a grain structure containing
second-phase particles (fy=8%, r=3), obtained from a phase-field
simulation on a 256 X 256 X 256 grid. Images are shown at (a) 7
=200, (b) r=2000, (c) +=5000, and (d) r=37 200.

and 12% of second-phase particles with a radius r of 3 grid
points. The parameter values were set to x=0.5 and L=1.
The discretization spacings were Ax=1 and A¢=0.2. First,
the conventional algorithm was executed on 20 processors
and applied until #,=1800. Second, the bounding box algo-
rithm was applied and run on only one processor until no
further growth was observed, for e= 107, The evolution of
the microstructure is illustrated for f,,=8% in Fig. 8. Figure 9
shows the evolution of the mean grain radius for the different
volume fractions fy. For larger values of fy, the grain growth
stops earlier and the final grain size is smaller.

In Fig. 10, the evolution of the normalized grain size dis-
tribution is shown for fy,=8%, with approximately 100
grains at the end of the simulation. The normalized grain size
distribution for a single-phase system is shown on one time
point, since for single-phase systems, the distribution is con-
stant in time [1]. As predicted by mean-field theories
[3,39,40], the simulation results indicate that, when second-
phase particles are present, the peak of the distribution shifts
towards smaller grain sizes.

To validate the computed results, we compare the ob-
tained limiting grain sizes to existing theories and observa-
tions. Figure 11 shows the ratio of the limiting mean grain
size to the particle radius as a function of the volume fraction
as computed by our phase-field simulations, the classical Ze-
ner relation, the relation obtained through three-dimensional
Monte Carlo simulation in [41], and the relation obtained by
phase-field simulation in [24]. The relation from [42], ob-
tained by fitting the parameters in the Zener relation with

501
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FIG. 9. (Color online) Evolution of the mean grain radius for
volume fractions of fy=5%, 8%, and 12% obtained from phase-
field simulations.
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FIG. 10. (Color online) Evolution of the normalized grain size
distribution for f;=8%, compared to the normalized grain size dis-
tribution for a single-phase system, obtained from phase-field
simulations.

experimental grain growth data for a variety of material sys-
tems, obtained under different experimental conditions, is
also added. The data obtained with our simulations corre-
spond well to the Monte Carlo results and the results of [24],
but deviate strongly from the experimental data. This indi-
cates that the Monte Carlo model, the phase-field model, and
the Zener relation are suitable for round-shaped particles and
isotropic grain boundary energies. However, to simulate real
materials, which contain plate- or lens-shaped particles or
anisotropic boundary energies, the phase-field model has to
be extended. The difference between the results from the
Monte Carlo simulations and those of the phase-field simu-
lations is probably due to the fact that the particles had a
slightly different shape in both simulation experiments, as
after discretization the small particles are no longer com-
pletely spherical. Due to the diffuse interfaces, the discreti-
zation effect is smaller in the phase-field simulations.

In [24], the results were obtained using a dynamic grain-
orientation reassignment algorithm. However, the computa-
tional requirements of the latter algorithm (approximately 48
gigabyte, on 16 processors) are more than ten times larger
than the requirements of the bounding box algorithm (2 gi-
gabyte, on 1 processor).

VIII. CONCLUSION

In this paper, a sparse bounding box algorithm is pre-
sented to perform efficient phase-field simulations of micro-
structural evolution in polycrystalline materials. The algo-
rithm only solves the phase-field equations locally, inside
bounding boxes which delimit regions of active phase-field
variables. In contrast to other sparse algorithms, the bound-
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FIG. 11. (Color online) Ratio of the radius of the limiting mean
grain size to the particle radius as a function of the volume fraction
fy, compared for different theories.

ing box data structure allows for semi-implicit time integra-
tion. Furthermore, because of the object-oriented design, the
bounding box algorithm is extendible to more complex mod-
els and has advantages in postprocessing.

The computational requirements of the bounding box al-
gorithm depend on the system size and not on the total num-
ber of involved phase-field variables. In combination with
the one-to-one mapping between grains and phase-field vari-
ables, this allows to perform coalescence-free simulations of
grain growth without the excessive memory usage or com-
puting time associated with existing methods.

To illustrate the applicability of the bounding box algo-
rithm, three-dimensional phase-field simulations of grain
growth in the presence of second-phase particles were per-
formed to study the effect of the particles on the growth
kinetics. The simulation results correspond well to other
simulation results, but deviate from experimental data. To
perform simulations of realistic materials, the phase-field
model has to be extended. We believe that the bounding box
algorithm will enable such simulations and provide better
insight in microstructural evolution.
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